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First measurements are presented for quasi-elastic light scattering from dilute solutions of cellulose
tricarbanilate in dioxane. The results are discussed principally in the light of the Yamakawa's model for
semi-rigid macromolecules. It is shown that this theory provides a good description of the spectra as a
function of molecular weight. We find a mean persistence length of 170 A and a hydrodynamic chain
diameter of 15 A. We also report the existence of a slowly decaying component in the time correlation
function which is associated with the existence of large aggregates in dynamic equilibrium with the

isolated macromolecules.
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INTRODUCTION

Quasi-elastic light scattering is a powerful toolin studying
molecular motions in liquids. It has been applied here to
the study of the translational motion of semi-rigid
macromolecules in a dilute solution.

The translational diffusion of flexible polymer in dilute
solution has been the subject of a number of studies, both
theoretical'*? and experimental® ~®. Other works (see for
example ref 7) have dealt with semi-dilute solutions and
have given information either on the local dynamics of
sections of polymer between the entanglement points, or
on the macroscopic behaviour of the pseudo-gel. These
previous studies have been concerned only with flexible
polymers. Very few studies investigating light scattering
exist for the more complicated case of semi-rigid polymers
(see for example ref 8). Cellulose tricarbanilate was studied
here. A semi-rigid chain can be characterized by the
correlation length for the orientation of the monomer
units, called the persistence length g. Various models can
then be used to calculate physical parameters in terms of ¢.
For instance, the very simple Kratky and Porod® model of
a worm-like chain establishes relationships between the
mean radius of gyration R; or the mean square end-to-
end distance 7 and the parameter x, the ratio of the
contour length / of the chain* to the persistence length ¢*°:

_ X 2 2
Ré=q2[3—1+x—;§(1—e")] (1)

P =q[2x~2(1—e "] 2)

Figure I shows the ratio RZ/(*/6) as a function of x for
this model. When the contour length is much greater than
the persistence length, this ratio tends to unity and the
chain acquires the Gaussian statistics of a flexible chain,
but where the statistical length is equal to the persistence

*  The contour length of the chain is defined as: 1 =D x{,, where D is
the degree of polymerization and [, is the projection of the monomer
bond.
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length instead of the monomer length. At the opposite
limit when the persistence length is much greater than the
contour length, the chain acquires the properties of a stiff
rod. In Figure I we also show a number of points
calculated for the polymers used here. The points were
calculated for a persistence length ¢ =170 A. This value
will be justified later. It can be seen that the points liein the
intermediate zone corresponding to semi-rigid polymers.
The purpose of this paper is to confront experimentally
measured values of the translational diffusion coefficients
with the predictions of theoretical models. As mentioned
above, the Kratky and Porod model provides an
expression for the radius of gyration. However our light
scattering measurements yield the translational diffusion
coefficient Dr. The Stokes-Einstein equation can be used
to define an experimental hydrodynamic radius Ry, (the
radius of an equivalent sphere for the hydrodynamical
properties) which in general is quite different from R;. The
problem of the relationship between the Ry and R of a
polymer in solution has been recently reviewed by Kok
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Figure 1 Application of the Kratky—Porod theory of worm-like

chains. Rg is the gyration radius, r is the end-to-end distance, / the
contour length and g the persistence length
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Figure 2 (a) Block diagram of the light scattering experiment
(Laser Spectra Physics 165 Argon lon; pM Hammamatsu; Photon
Counting Ortec; Digital Correlator Langley Ford LIF 128; Com-
puter ITT 2020), (b) a typical spectrum (— — — —) experimental
points, (-~ ) fitted points. The curve is fitted with a sum of a
distributed exponential of short relaxation time and an exponential
of characteristic long time (CTC-Dioxan 385000 1.68E-4G/G 21.5C
90D 4765A HET. Long decay constant: 1.3990E-03 sec. ampl:
123444 .556. Short decay constant: 1.9502E-04 sec. ampl:
90492.360 var: 0.19. CHI2:0.996376. Hydrodynamic radius:
236.6 A)

and Rudin''. Ry, is, in all cases, substantially smaller than
R;'%. The relationship is not, in general, so obvious and
thus a direct comparison of Ry; and R, is impossible. For
this reason, our results will be discussed essentially in the
light of a more recent theory, from Yamakawa®® ~ !5, This
model, which calculates the viscous drag on a wormlike
chain, taking into account the non-zero hydrodynamic
diameter of the chain and the statistical properties of a
semi-rigid chain, yields direct expressions for the intrinsic
viscosity and the translational diffusion coefficient.

EXPERIMENTAL

A block diagram of the apparatus is shown in Figure 2a. It
is an optical beating spectrometer which can function
either in the homodyne mode or in the heterodyne mode
with the help of the ‘H’ arm. The incident beam is focused
by L1 into a square sample cell housed in a cryostat. The
light scattered at 90° is limited in a solid angle and
collected on a photomultiplier. In the heterodyne
experiments a small fraction of the laser beam, suitably
attenuated and focused, is mixed with the scattered light.
The photo-pulses from the photo-multiplier are
standardized and then analysed by a digital correlator
which calculates the average time correlation function or
time ‘spectrum’. A typical spectrum is shown in Figure 2b.
These spectra were analysed on a micro-computer using a
conjugated gradient fitting procedure.

For each sample and at a given temperature a series of
spectra was recorded for different ranges of delay times so
as to determine the full decay of the spectrum. In general
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the decay was not a simple exponential. This point will be
discussed later. The time spectrum of light scattered by the
translation motions of a monodisperse solution of
macromolecules is given by

C(t)=A+Bexp[ —h D) 3)

where u is the magnitude of the scattering vector
u=4m/A sin 0/2 (8 =scattering angle, 1= wavelength of the
incident light in the solution) and h is equal to 1 or 2
respectively for heterodyne or homodyne spectra.

The semi-rigid polymer used in these experiments was
cellulose tricarbanilate (CTC). The samples were kindly
supplied by E. Marchal* and prepared and fractionated
by W. Burchard and B. Pfannemiiller*. They are well
characterized, the polydispersity ratio M_ /M, is weak,
from 1.1 to 1.4 according to the samples. The molecular
weights and solution concentrations C are quoted in Table
1. This work is concerned only with very dilute solutions;
1.e. with solutions whose concentrations are, in all cases,
less than the critical concentration C* for overlapping of
the chains®?®: C*=M /RN p (M, is the mass of the
polymer, p: the density of the solution and N, is the
Avogadro’s number). The solvent was Uvasol quality
Dioxane (Merck)filtered prior to use. The refractive index
of dioxane at 20°C is 1.4280 at 4880 A and 1.4264 at 5145
A, the temperature coefficient is dn/dr= —4.75x 10™*
deg™''® The viscosity is given by the following
expression’”:

7(cP)=8.5449 x 10~ 3 exp{1.4741 x 103/T(K)}

This cellulose derivative is particularly interesting.
Burchard et al.'®'® have studied its intrinsic viscosity in
dioxane at 20°C for a large number of molar masses. Some
optical studies, flow birefringence?® and Kerr effect?!
have been performed in the same solvent, or in a different
solvent??. Lastly a detailed study by dielectric
relaxation®* and small-angle neutron scattering®® has
been performed on very dilute solutions of CTC in
dioxane. The persistence length at 20°C was found to be
108 A for the dielectric relaxation and 136 A for the small-
angle neutron scattering. Gupta et al.** have shown the
existence of a cooperative thermally induced
conformation change, similar to a helix-coil transition.

RESULTS AND DISCUSSION

Determination of the persistence length

In previous studies, the persistence length has been
obtained using the Kratky-Porod model® or Hearst’s
theory?®. Here, we will apply Yamakawa’s model of a
wormlike cylinder to our results. In dilute solution, the
friction coefficient {7 (and thus the translation diffusion
coeflicient D;=kT¢;) is evaluated by a procedure
similar to that of Kirkwood and Riseman?’. Yamakawa
showed that the results can be written in terms of the
contour length [, the persistence length g and the
hydrodynamic diameter d, or more precisely in terms of
the reduced quantities L=1/2¢ and D =d/2q. The results

Dr E. Marchal, Centre de Recherches sur les Macromolécules 6, Rue
Boussingault, 67083 Strasbourg Cedex, France. Dr W. Burchard and Dr
B. Pfannemiiller, Institute of Macromolecular Chemistry, University of
Freiburg, West Germany. We wish to thank them for thereby making
this study possible.
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Table 1 Experimental and theoretical parameters as function of molecular weight of CTC

My 59700 83000 230000 385000 910000
Dp 115 160 443 742 1753

g 3.48 4.85 13.42 22.50 53.10
c 9.60 10— 6.00 10— 460 103 1.68 10— 1.60 103
c/ic* 214102 2.02 102 42 101 225102 3.7 101
R@G Kratky—Porod 1290 165.2 3230 436.0 695.0
R@G Flexible (v =0.6) 36.2 442 814 110.9 185.8
R Flexible (v = 0.5) 22.6 26.6 443 57.3 88.0
RgG Exp 159 195 364 498 850

R 4 Yamakawa worm-like 67.2 844 166.9 231.7 390.2
Ry Yamakawa coil limit 1231 147.0 2423 312.6 478.7

R 1y Yamakawa rod-like limit ~ 72.9 93.8 210.8 322.4 665.2
Rpexp 68.5 85.0 167.5 235.0 -

All lengths are expressed in Angstroms

The concentrations are expressed in gm of CTC/gm of dioxane. C* is the critical concentration (C* = MW/R?; Nap) calculated with Rg

deduced from the Kratky —Porod theory (with g =170 A)

All theoretical radii presented in this table are calculated using the following parameters: ¢ =170 A and d = 15 A (see text)

The gyration radii Rg in the case of flexible chains is obtained by using the relation Rg = {/3 /e)1/2 Dp, with v =0.6 or 0.5 when the excluded
volume behaviour is or is not taken into account29. R@G exp are the values extrapolated from Ref, 33

R exp are the values obtained in the present study. Due to the very high concentration of aggregates in the solution of CTC of mass 910 000,

the radius could not be reliably obtained

Dp is the degree of polymerization /is the polymer contour length and /y the monomeric unit length

appear in a different form according to the numerical
value of L:

for L>2278:
Er=3mnL/[AL"?+ A, + A, L7 "2+ A, L7 + A,L77]
(4a)
and for L<2.278:
¢r=3myL/[C,Ln(L/D)+C,+C,L+1?
+C4L*+ C(D/L)Ln)L/D)+ C,(D/L) (4b)
+Cg(D/L)* + Co(D/LY + C, o(D/L)* +0(D/L)*]

The A;and C, are functions of D and are given explicitly
in ref 13. For ease of comparison with other theories, and
in order to provide a physical image we will continue the
discussion in terms of the hydrodynamic radius of an
‘equivalent’ solid sphere, given by Stokes’s formula:

Ry =kT/6rnDr=Cr/6mny )

(where n is the macroscopic viscosity of the solvent), D is
measured experimentally and &; is calculated from
equations (4a) or (4b). We thus can determine the
molecular quantities ¢ and d for which Yamakawa’s
model gives the best agreement with the experimentally
determined hydrodynamic radius. We should emphasize
that in doing this, we suppose that the conformational
state of the macromolecules does not change with the
molecular weight, and neither do the quantities ¢ and d.
Thus, we can effectively determine the mean values of g
and d for the range of weights investigated. The contour
length of the polymer is calculated from the degree of
polymerization and the known length of the monomer
unit [, =5.15 A232%,

As mentioned above, the experimental spectra were not
simple exponentials as indicated in ref 3. There are two
principal sources of complication. Firstly the mass
polydispersity of the samples gives rise to a distribution of
decay times for the exponentials. The polydispersity index
for our samples was quite low, giving rise to a fairly

narrow distribution of decay times which could be
introduced into the fitting procedure via a moments
expansion. The second source of complication was the
existence of a second exponential with a longer decay
time, typically 10 to 20 times longer than the time
associated with the translational motion of the
macromolecules.

This second exponential was taken into account using
the information from the long time tail of the time spectra.
The origin of this second exponential will be discussed
later. In Figure 3 and Table 1, the values of Ry measured at
20°C as a function of molecular weight are given.

The diffusion coefficient and thus the radius have been
found to be independent for each mass of the concentra-
tion of the solution when C << C* We then searched
graphically and numerically the pairs of values of § and d
which satisfy equations (4a) and (4b) for the masses
measured. It should be stated that Ry depends
simultaneously on both § and d but with opposite sign.
That is the reason why a very great number of masses have
to be studied to get a precise value for these quantities and
why measurements concerning other samples are
presently in progress. The values which best fit our
experimental values of R, are:

Gg=170A+40A d=15A+3A

The values correspond to the solid line ‘worm-like’
Yamakawa 1 in Figure 3 where we also show the curves
corresponding to the values §=215 A, d=12 A
(Yamakawa 2) and =135 A, d=18 A (Yamakawa 3).

It should be noted, by plotting the curves R(g) at
constant d for the different masses, that the friction
coefficients are more sensitive to the diameter than to the
persistence length of the polymer in the case of the low
molecular weight limit, while the opposite is observed
with the high molecular weight limit. These cases tend to
the two extreme limits defined by Yamakawa: i.e. the long-
rod limit where D and L approach zero (¢ — oo, D—0) at
constant L/D>1 and the coil limit where L—o0. The
curves corresponding to these limiting cases are also
shown in Figure 3. They are nearly the same as those
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Figure 3 Calculated and experimental radii of CTC chains of various
molecular weight M,,,. All theoretical lengths are calculated by using
the parameters ¢ = 170 A and d = 15 A except in the case of worm
like theory of Yamakawa, where curves 2 and 3 are drawn by using
g=2156A,d=12Aand g =135 A,d =18 A respectively. (0®):
experimental gyration radii33, (+ +): experimental hydrodynamic
radii [present work]

which would be obtained by using the very simple rod-like
chain?! or flexible chain®? theories but in the case where
the persistence length ¢ is taken as basic unit length and
the number of units is then N* =1/n (g =contour length)
instead of the degree of polymerization. It can be seen that
the hydrodynamic behaviour of CTC is intermediate
between these two limits and is described well by
Yamakawa’s theory. It certainly constitutes a better
description for semi-rigid molecules than that of a
Gaussian coil or the Kratky—Porod model (even with an
arbitrary corrective factor to take into account the
difference between the radius of gyration and the
hydrodynamic radius).

The applicability of the worm-like chain model of
Yamakawa can also be tested by studying the intrinsic
viscosity [n] of the same solutions. The hydrodynamic
diameter and the persistence length have been calculated
from various experimental determinations>°. Their mean
values are § = 154 A and d = 14 A. The agreement between
the molecular quantities deduced from the two
independent experimental measurements is quite
satisfactory.

A thermally induced conformational change of the
CTC macromolecules has been observed by dielectric
measurements?*. These authors also show that the
transition temperature observed with CTC is chain length
dependent. Preliminary measurements of the diffusion
coefficients by light scattering seem to confirm these
observations. A variation of the hydrodynamic radius
with temperature is observed, corresponding to the
conformational change of the macromolecules. For
example, in the case of CTC (M, =385 000), Ry is equal to
235+ 10 A at 20°C and 205 + 10 A at 90°C. Measurements
are in progress and will be reported in a further
publication.

Form of the photon-correlation spectra. Problem of
aggregation in solution

We can recall that at 20°C the light spectrum of
solutions of CTC macromolecules in dioxane could not
generally be fitted by a simple exponential. We observe
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two decays with well separated time scales. The shortest
one, which is represented by a distributed exponential has
been attributed to the translational diffusion of the
individual chains. The slow decay may be due to the
presence of aggregates in solution. They are not physical
or chemical impurities since if they disappear either by
heating or by centrifugation, they reappear with a slow
rate of formation. We have also observed that the relative
amplitude of the slow mode increases rapidly with the
solution concentration. It does not seem that a significant
trend of variation of the characteristic time with the mass
exists, but we must note that for the lowest mass
investigated, this phenomenon was too weak to be
observed. However, on heating, we observe a decrease in
relaxation time and a decrease in relative amplitude of the
slow decay. We propose that this second relaxation could
be due to the diffusion of aggregates in the solution. The
equivalent hydrodynamic radius Ry of these entities is
rather large: 2500 to 4500 A. They could constitute the
first precursors of an anisotropic phase which should exist
at a much higher concentration.
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